A distributed system is an application that executes a collection of protocols to coordinate the actions of multiple processes on a network, such that all components cooperate together to perform a single or small set of related tasks.

Why build a distributed system? There are lots of advantages including the ability to connect remote users with remote resources in an open and scalable way. When we say open, we mean each component is continually open to interaction with other components. When we say scalable, we mean the system can easily be altered to accommodate changes in the number of users, resources and computing entities.

Thus, a distributed system can be much larger and more powerful given the combined capabilities of the distributed components, than combinations of stand-alone systems. But it’s not easy – for a distributed system to be useful, it must be reliable. This is a difficult goal to achieve because of the complexity of the interactions between simultaneously running components.

To be truly reliable, a distributed system must have the following characteristics:

  • Fault-Tolerant: It can recover from component failures without performing incorrect actions.
  • Highly Available: It can restore operations, permitting it to resume providing services even when some components have failed.
  • Recoverable: Failed components can restart themselves and rejoin the system, after the cause of failure has been repaired.
  • Consistent: The system can coordinate actions by multiple components often in the presence of concurrency and failure. This underlies the ability of a distributed system to act like a non-distributed system.
  • Scalable: It can operate correctly even as some aspect of the system is scaled to a larger size. For example, we might increase the size of the network on which the system is running. This increases the frequency of network outages and could degrade a “non-scalable” system. Similarly, we might increase the number of users or servers, or overall load on the system. In a scalable system, this should not have a significant effect.
  • Predictable Performance: The ability to provide desired responsiveness in a timely manner.
  • Secure: The system authenticates access to data and services

Sources:

http://www.hpcs.cs.tsukuba.ac.jp/~tatebe/lecture/h23/dsys/dsd-tutorial.html

Last modified: March 22, 2019

Author

Comments

Write a Reply or Comment